Sample Paper- Mathematics

MM:75 Time:90 Min.

General Instructions

- I. All questions are compulsory and carry equal marks.
- II. There will be negative marking for incorrect answer. One fourth marks will be deducted from the total marks scored.
- III. There is only one correct answer, hence mark one choice only.
- IV. Use of calculator is not permitted.
- V. Total number of questions is 75.
- VI. Answers are to be marked on OMR sheets only.
- VII. Please remember, this is a compulsory exam so do not cheat or permit anybody to do so.
 - 1. The decimal expansion of 141/120 will terminate after how many places of decimals ?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) will not terminate
 - 2. If p, q are two consecutive natural numbers, then HCF(p, q) is:
 - (a) q
 - (b) p
 - (c) 1
 - (d) pq
 - 3. How many prime factors are there in prime factorisation of 5005 ?
 - (a) 2
 - (b) 4
 - (c) 6
 - (d) 7
 - 4. If p, q are two prime numbers, then LCM(p, q) is :
 - (a) 1
 - (b) p
 - (c) q
 - (d) pq
 - 5. Euclid's division lemma states that for any two positive integer 'a' and 'b' there exists unique integers q and r such that a=bq+r where r must satisfy:
 - (a) 1 ≤ r < b
 - (b) $0 < r \le b$
 - (c) 0 ≤ r < b
 - (d) 0 < r < b
 - 6. Which of the following numbers has terminating decimal expansion?
 - (a) 37/45
 - (b) $21/(2^{3}5^{6})$
 - (c) 17/49
 - (d) $89/(2^23^2)$
 - 7. The decimal expansion of π
 - (a) is terminating.
 - (b) is non-terminating and repeating
 - (c) is non-terminating and non-repeating
 - (d) None of these

8. $\cos 1^\circ \times \cos 2^\circ \times \cos 3^\circ \times \dots \times \cos 180^\circ$ is equal to : (a)1 (b) 0 (c) 1/2 (d) –1 9. Which of the following is correct some θ such that $0^{\circ} \le \theta < 90^{\circ}$ (a) $1/\sec\theta > 1$ (b) $1/\sec\theta < 1$ (c) $\sec\theta = 0$ (d) $1/\cos\theta < 1$ 10. If $\sin \theta = \cos \theta$, then the value of $\csc \theta$ is : (a) 2 (b) 1 (c) 2/√3 (d) √2 11. Given that sin A=1/2 and cos B=1/ $\sqrt{2}$ then the value of (A + B) is: (a) 30° (b) 45° (c) 75° (d) 15° 12. If sec θ – tan θ = 1/3, the value of (sec θ + tan θ) (a) 1 (b) 2 (c) 3 (d) 4 13. The value of tan 1°.tan 2°.tan 3° ... tan 89° is : (a) 0 (b) 1 (c) 2 (d) ½ 14. If $\tan 2A = \cot (A - 18^\circ)$, then the value of A is: (a) 18° (b) 36° (c) 24° (d) 27° 15. If $\cos 3\theta = \sqrt{3}/2$; $0 < \theta < 20^\circ$, then the value of θ is : (a) 15° (b) 10° (c) 0° (d) 12° 16. $\sin (60^\circ + \theta) - \cos (30^\circ - \theta)$ is equal to : (a) $2 \cos \theta$ (b) 2 sin θ (c) 0 (d) 1 17. When we raise our hand to look at the object, the angle formed by the line of sight with horizontal is known as: (a) obtuse angle (b) angle of elevation (c) angle of depression

(d) acute angle

- 18. When the length of the shadow of a pillar is equal to its height, the elevation at source of
 - sight is:
 - (a) 30°
 - (b) 45°
 - (c) 60°
 - (d) 90°
- 19. The angle of depression from the top of a tower 12 m high, at a point on the ground is 30°. The distance of the point from the top of the tower is:
 - (a) 12 m
 - (b) 4√3 m
 - (c) 12√3 m
 - (d) 24 m
- 20. If the angle of depression of an object from a 75 m high tower is 30°, then the distance of the object from the base of tower is:
 - (a) 25√3 m
 - (b) 50v3 m
 - (c) 75√3 m
 - (d) 150 m
- 21. The tops of two poles of height 10m and 18m are connected with wire. If wire makes an angle of 30° with horizontal, then length of wire is:
 - (a) 10 m
 - (b) 12 m
 - (c) 16 m
 - (d) 18 m
- 22. Find the zeroes of the polynomial $x^2 17$
 - a) 17, 17
 - b) $\sqrt{3}, -\sqrt{3}$
 - c) <u>19</u>, <u>19</u>
 - d) none of these
- 23. Find a cubic polynomial when the zeroes are 3, -1, -1/3
 - a) $3x^3 5x^2 11x 3$
 - b) $3x^3 + 5x^2 + 11x 3$
 - c) $3x^3 5x^2 + 11x + 3$
 - d) none of these

24. Find all the zeroes of $2x^4 - 3x^3 - 3x^2 + 6x - 2$ if two of its zeroes are and $\sqrt{2}$ $-\sqrt{2}$

- a) $\sqrt{2}, -\sqrt{2}, 1, \frac{-1}{2}$
- b) $\sqrt{2}, -\sqrt{2}, -1, \frac{-1}{2}$ c) $\sqrt{2}, -\sqrt{2}, 2, \frac{1}{2}$

- d) $\sqrt{2}, -\sqrt{2}, \frac{1}{2}, 1$
- 25. The quotient and remainder are x 2 and -2x + 4 respectively. If the polynomial x^3 $3x^2$ + x + 2 is divided by g(x). Find g(x)
 - a) $x^2 + x + 1$
 - b) x² x 1
 - c) $x^2 x + 1$
 - d) none of these

26. Find a quadratic polynomial whose zeroes are $\frac{7+\sqrt{9}}{2}$ and $\frac{7-\sqrt{9}}{2}$

- a) $x^2 7x + 10$
- b) $x^2 + 7x + 10$
- c) $x^2 7x 10$
- d) $x^2 + 7x 10$

27. Find the zeroes of the quadratic polynomial $x^2 + 19 x + 90$

- a) -9, -10
- b) 9,10
- c) 4,5
- d) -4, -5

28. If p and q are the zeroes of the polynomial $x^2 - 5x - k$. Such that p - q = 1, find the value of K

- a) 6
- b) 7
- c) 8
- d) 9

29. Find the value of a so that -2 is a root of $2x^2 - x + a = 0$

- a) 10
- b) -10
- c) 9
- d) -9

30. If p and q are the zeroes of the polynomial $x^2 + px + q = 0$, then

- a) p=1
- b) p=1 or 0
- c) p=2
- d) p=2 or 0
- 31. The hypotenuse of a right angled triangle is 6 cm more than twice the shortest side. If the third side is 2 cm less than the hypotenuse. Find the side of the triangle
 - a) 10, 24, 26
 - b) 4, 6, 8
 - c) 3, 4, 5
 - d) 5, 12, 13
- 32. Find two consecutive odd positive integers, sum of whose squares is 290
 - a) 13,15
 - b) 11,13
 - c) 7,9
 - d) 5,7

33. Solve for x $\frac{2x-3}{x-1} + 1 = \frac{6x^2 - x - 3}{x-1}$

- - a) -1/3
 - b) 2/3
 - c) 1,-1/3
 - d) 1/3,-1
- 34. A rectangular park has perimeter 80 m and area 400 m². Find its length and breadth
 - a) 40,10
 - b) 20, 20
 - c) 16, 25
 - d) none of these
- 35. A train covers a distance of 300 km at a certain average speed. If its speed were decreased by 10 km/hr, the Journey would take 1 hour' longer. What is average speed of the train?
 - a) 40 km/hr
 - b) 50 km/hr
 - c) 45 km/hr
 - d) 60 km/hr

- 36. There are three consecutive positive integers such that the sum of the square of the first and the product of the other two is 154. What are the integers
 - a) 6, 7, 8
 - b) 7, 8, 9
 - c) 8, 9, 10
 - d) 9, 10, 11
- 37. Solve for y $y^2 + y/2 3 = 0$
 - a) -2,6
 - b) -2, 3/2
 - c) 2, 3/2
 - d) 3,4

38. Circumference of a circle is numerically equal to area. Its diameter = ____ cm.

- a) 2
- b) 4
- c) 8
- d) 3

39. Area of region between two concentric circles of radii 28 cm and 35 cm = $___cm^2$

- a) 1386
- b) 3850
- c) 1836
- d) 2464

40. Area of the largest triangle that can be inscribed in a semicircle of radius 2r cm is

- a) $4r^2 \text{ cm}^2$
- b) $2r^2$ cm²
- c) $r^2 cm^2$
- d) $8r^2 cm^2$

41. The circumference of a circle exceeds its diameter by 180 cm. Then its radius is

- a) 32 cm
- b) 36 cm
- c) 40 cm
- d) 42 cm

42. If 18, a, b, – 3 are in A. P., then a + b =

- a) 12
- b) 15
- c) 11
- d) 16

43. The 11thterm from the end of the A.P. 3, 8, 13, ..., 253 is

- a) 203
- b) 303
- c) 153
- , d) - 303
- u) = 505
- 44. The sum of first 10 multiples of 3 is
 - a) 165
 - b) 160
 - c) 170
 - d) None of these

45. The famous mathematician associated with finding the sum of first 100 natural numbers is

- a) Bhaskar
- b) Newton
- c) Eulid
- d) Gauss

46. Sum of 4 terms of an A.P. is and the greatest and smallest terms are in ratio 4:1. Then the greatest term is

- a) 22
- b) 15
- c) 18
- d) 20

47. Quadrilateral ABCD circumscribes a circle of radius r. AB = 4 cm, BC = 5 cm, CD = 6 cm. DA = ____ cm.

- a) 5.5
- b) 4
- c) 6
- d) 5

48. In figure if AD = 6.5 cm, DE = 5.5 cm and EA = 8 cm then AC = ____ cm.

a) 10b) 20c) 15d) 8

49. TP is tangent of length 12 cm from an external point T to a circle with r.If TO = 13 cm then r = ____ cm

- a) 1
- b) 25
- c) 5
- d) 10

50. A rhombus which is not a _____ cannot be inscribed in a circle.

- a) Square
- b) Rectangle
- c) Parallelogram
- d) isosceles triangle

51. The coordinates of centroid of triangle vertices A(3, 4), B(6, 7) and C(9, 13) are

- a) (6,8)
- b) (8, 6)
- c) (8,8)
- d) (6, 6)

52. The points A(1, 2) and B(r, s) are collinear with origin then

- a) a = b
- b) a = 2b
- c) 2a = b
- d) 303

53. The distance of point A(3, 4) from origin is

- a) 3
- b) 4
- c) 5
- d) None of these

- 54. The perimeter with vertices (0, 0), (9, 0) and (0, 40) is
 - a) 90
 - b) 49
 - c) 41
 - d) none of these
- 55. Three vertices of a parallelogram in order are (-1, 2), (2, -1), (3, 1). The fourth vertex is
 - a) (0,4)
 - b) (4,0)
 - c) (2, 2)
 - d) none of these
- 56. Two coins are tossed simultaneously. The probability of getting at least one head is
 - a) 1/3
 - b) 1/2
 - c) 1/4
 - d) 2/3
- 57. The probability of 53 Sundays in a leap year is
 - a) 53/365
 - b) 53/366
 - c) 1/7
 - d) 2/7
- 58. A card is drawn at random from a well shuffled deck of 52 playing cards. The probability of getting a king or red queen is
 - a) 2/13
 - b) 3/26
 - c) 1/13
 - d) 7/52
- 59. A card is drawn at random from a well shuffled deck of 52 playing cards. The probability of getting a non face card is
 - a) 9/13
 - b) 4/13
 - c) 3/13
 - d) 10/13
- 60. The positive root of $\sqrt{3x 6^2 + = 9}$ is:
 - a) 3
 - b) 5
 - c) 4
 - d) 7
- 61. $(x^2 + 1)^2 x^2 = 0$ has
 - a) 4 real roots
 - b) 2 real roots
 - c) 1 real roots
 - d) no real roots
- 62. For what value of r the quadratic equation $r x^2 + 4x 4 = 0$ has real roots.
 - a) r≥–1
 - b) r ≤−1
 - c) r ≥1
 - d) r ≤1
- 63. If the one root of the equation $4x^2 2x + (r 4) = 0$ be the reciprocal of the other, then r =
 - a) 8
 - b) -8
 - c) 4
 - d) -4

64. The cubes of side 3 cm which can be cut from a cube of side 6 cm is

- a) 2
- b) 4
- c) 8
- d) 3

65. The radii of two cylinders are in ratio 2:3 and their are in ratio 3:2. Ratio of their volumes is

- a) 4:9
- b) 9:4
- c) 3:2
- d) 2:3

66. The ratio of volumes of two spheres is 8:27, the ratio of their surface areas is

- a) 4:9
- b) 9:4
- c) 2:3
- d) 3:2

67. A solid is converted from one shape to another. The volume will ______

- a) Increase
- b) remain same
- c) decrease
- d) none of these

68. Two cubes of volume 125 cm³ each is joined end to end. The surface are of resultant solid is ______

- cm²
 - a) 125
 - b) 450
 - c) 250
 - d) 62.5

69. The roots of quadratic equation $5x^2 - 4x + 5 = 0$ are

- a) Real & Equal
- b) Real & Unequal
- c) Not Real
- d) Real & Equal

70. If one root of the equation $ax^2 + bx + c = 0$ is three times the other, then b^2 : ac = 0

- a) 16:1
- b) 16:3
- c) 3:16
- d) 3:1

71. A right triangle with sides 3 cm, 4 cm and 5 cm is revolved along 3 cm side. The volume of solid generated is

- a) 12л cm²
- , b) 8л cm²
- , c) 4л cm²
- d) 16л cm²
- 72. Surface area of a sphere is 5544 cm². Its diameter is _____ cm
 - a) 42
 - b) 63
 - c) 126
 - d) 21

73. Which of the following is not a measure of central tendency

- a) Mean
- b) Median
- c) Mode
- d) Standard Deviation

74. If the mode of a series exceeds its mean by 12, then mode exceeds the median by

- a) 4
- b) 8
- c) 6
- d) 10
- 75. If mean of 6, 7,X,8,Y,14 is 9, then
 - a) X+Y=21
 - b) X+Y=19
 - c) X-Y=19
 - d) X-Y=21